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NEAL C. BECKER AND ANN.E. CUDD

INDEFINITELY REPEATED GAMES:
A RESPONSE TO CARROLL

ABSTRACT. In a recent volume of this journal John Carroll argued that there exist
only uncooperative equilibria in indefinitely repeated prisoner’s dilemma games. We
show that this claim depends on modeling such games as finitely but indefinitely re-
peated games, which reduce simply to finitely repeated games. We propose an alternative
general model of probabilistically indefinitely repeated games, and discuss the appropriate-
ness of each of these models of indefinitely repeated games.

Keywords: Repeated games, prisoner’s dilemma.

In his article ‘Indefinite Terminating Points and the Iterated Prisoner’s
Dilemma’, John Carroll asserts that there are ‘“only uncooperative
equilibria in finitely, but indefinitely, iterated games,” and that this
“calls into question the significance of the existence of cooperative
equilibria in infinitely iterated Prisoner’s Dilemma games.”" In this
note we will show that the second claim is overstated because the
iterated games he refers to are equivalent to finitely and definitely
iterated games, of which it is well known that there are only un-
cooperative equilibria. We will show that there exists an alternative
model of indefinitely iterated games which is not equivalent to finitely
iterated or to standard infinitely iterated games, but which allows for
cooperative equilibria in some instances. And we will argue that these
games capture the features of reality which Carroll wanted to high-
light.

The problem centers around Carroll’s notion of an indefinite itera-
tion, which he characterizes using what he calls a ‘terminating p-
function’, defined as follows.

p is a terminating p-function if and only if

(1) > p(t)=1, and
t=1
(2) there exists a natural number A such that

Theory and Decision 28: 189195, 1990. '
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(a) p(A)>0, and

(b) for all natural numbers n > A, p(n) =07

He tells us that we can think of P(?) as the probability that the game
will be iterated t times. Notice that according to this definition the
game will not be played more than A times, so that the sense in which
the endgame is indefinite is that it might be played fewer than A times.
Since there is an iteration which will be the last if the game is iterated
even that long, it seems to us that it is not at all surprising that a form
of the backwards induction proof that shows that there are only
noncooperative equilibria in finitely repeated Prisoner’s Dilemma
(hereafter, PD) games would apply here, as Carroll demonstrates.

. We will argue that the indefinite iteration to which Carroll refers is
]},ISI equivalent to a finitely repeated game with a definite final itera-
tion. This would show what we claim, which is that Carroll’s result is a

trivial .extension of an already well-known result. Suppose we have the
following PD payoff matrix:

player 2
C D
X, X Z,y
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Note that this is just equivalent to:
A
(1) 2 p (= Dn X
t=

since A is the last period with a positive probability of being played.
The ‘«’ in (1) is gratuitous, and serves only to cloud the issue of
whether the game is to be repeated finitely but indefinitely (i.e. with a
finite upper bound on the number of possible iterations) or infinitely
but indefinitely (that is, with no finite upper bound on the number of
possible iterations). Note also that the utility functions which Carroll is
presupposing must be von Neumann-Morgenstern utility functions,
since he assumes in writing the iterated game payoff functions this way
that they have the expected utility property.® Finally note that Carroll
seems to be supposing that the players have common knowledge of the
iterated supergame, in particular, of A, and of the players’ rationality.5
The problem, then, is to find the equilibrium strategies a and b for
each player, given the supergame payoffs in Equation (1’). By the
expected utility property, the problem is equivalent to finding the
equilibrium strategies a and b for the supergame payoff given by:

A

2 o m Xl

=1

where X* represents the payoffs of the following matrices for each
period:

player 2
C D
¢ | pe-DED | pe-DzY|
player 1 Period ¢
D | p*t—1)(y, 2) | p*¢=1D)(w, W)

Fig. 2.

But this is just A, i.e. finitely many, consecutive PD games. In the last
iteration players have a dominant strategy to play D, as in the one shot
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PD, and this begins the backwards induction. Thus. Carroll. s ;rl(iiteeﬁrgied
ly iterated PD supergame is €quivalent to the deﬁmt.el.y finitely B
PD supergame with discounting for time,1 altgd SO 1t is no surp
t it has only an uncooperative solution. o

]eagnisth:till an interyesting question, however, whether.mtuatlocl;slt :(f
indefinitely repeated interaction should be modele.d as ﬁr.utely repﬁated
discounted games or as the standard sort of indefinitely ;'.epk -
games. We would like to conclude by giving a few reasons to t lndeling
the indefinitely repeated variety is better suited to the tas}< of mo .
a risky future. The ‘standard indefinitely iterated game’, as Wg.m g
call it, is the game I€presented by Figure 1 repeated with probabi Yce
cach time, so that the probability that the game will be repe'alted- 1(1mbe
(i.e. played twice) is 4, (0<d$1), the probability. that it V&;l e
repeated twice (j.e. iterated 3 times) is d°, and in g_enetlﬁ ,The
probability that iteratiop ; of the game, g, will be played. is d E )
difference between this and Carrolps finite but indefinitely 1ter.at.e
game is that the standarg iterated game has 3 small b‘ut. p.OSItIVg/
uing in any finjte iteration. But since it is indee
» and thus face only finitely many
n, Carroll claims that the iterated

better model of reality. He writes, “my definition of the iterated payoff

IS specifically designed to Capture the finiteness of genume iterate
Prisoner’s Dilemmag »6

There are two
shown, the definit
iterations in Carr
terminating p-fun
and makes j

problems with Carroll’s claim. First, as we hav€;
eness induced by the upper bound on the number 0
oll's game (ie. clause (2) of his definition of the

- Second, the upper bound on the iterations

ditional Probability of future iterations of the game
icular, the conditj

Of perhaps ever, certain that the currfent
ink that it is more realistic to 1maglf.11€;
IS a positive probability that one wi
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experience another interaction; that’s why it is a bad idea (unless you
are precommitting yourself to preclude weakness of will) to burn your
bridges.

An analogy may make our point clearer. Suppose Ethel lives longer
than anyone has ever lived before, say 175 years. We might imagine
that a game theorist modeling PD iterations in life would set the
probability of living 176 years at 0. But is it reasonable for Ethel to
believe that it is certain that she will not live another year? Given that
she has lived 175 years, it seems to us that she would be justified in
placing a positive, if small, probability on living another year. The
same point could be made, we believe, for any interaction situation — it
seems to us that it is normally unreasonable to believe with certainty
that any particular interaction is the last of its kind. Carroll claims that
it is certain that we will not face a decision situation for millions of
centuries, but in order to build this certainty in he must set an arbitrary
upper bound on the number of iterations, and this is problematic for at
least the last game. The standard indefinitely iterated game, on the
other hand, would place a very small, vanishing to zero, probability on
the chances of interactions continuing for “millions of centuries”.

An alternative approach, which captures the idea that the probabili-
ty of continuing iterations of the game decreases with time, but doesn’t
require the conditional probability of the game continuing at any stage
to be zero, is to let the probabilities decrease monotonically with time
reaching zero only in the limit, if at all. Let p’(f) be the probability
that the game will be played t times conditional upon its having been
played ¢ —1 times, such that p’ has three properties:

(a) lim p'(#) = «, 1z2a=0;

f ]

(b) p'(t) is monotonically decreasing;
(c) 1=p'(1)>0.

Notice that if we were to allow p’(t) = 0 for some ¢, we would have
Carroll’s finitely iterated PD. If p'(t) =1 for all ¢ we have the infinitely
repeated PD, and if p’(¢) is a constant between 0 and 1 we have the
standard indefinitely repeated PD. Our p’(r) function also allows the
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conditional probability to vary with time in order to capture the
situation of Ethel,

iteration * such tha the probability of continuing is very close to
and it no longer pays the Players to cooperate, and this s enough to
begin the backwards induction to show that they will never cooperate
for such an . Thus for some such games Carroll’s result would hold
despite the potentially infinjte iteration. More interestingly, however,

ly patient (or €quivalently the probability of continuing is sufﬁclen_ﬂy
great) in the indefinitely iterae] PD there are also equilibria at which
players cooperate.’ (In our P'(t) function the sufficient patience re-
quirement is that g must be large enough,)

Of course, there may be artificig] situations which are best modeled
by the indefinitely finitely jterated PD, such as ap Axelrod-type
tournament jp which an upper bound on the number of iterations has
been set. Byt these situations mugt be manufactured to have the
definite upper bound; they are not naturally occurring. And as we have

Seen, such games are equivalent tg finitely repeated games with
discounting.

NOTES

' John Carrol (1987), pp. 255_¢.
*Ibid., p. 249,
: . o

Car'roll claims op P- 251 that “P*(r) could pe interpreted as the probability t_h‘,at garfnf:
_[z] will be Played,” byt We take it that j should reag ‘Pr(e—~1y, given his definition of i
in terms of p(1).
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